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Unit 7 Part 13 Readings: Convergence
Convergence
Limit of a series – does it converge on the right value or does it diverge?
Squeeze theorem for sequences 
Let {an} {bn} and {cn}  be sequences with an ≤ bn ≤ cn for all intergers n greater 
than some index N  lim
n →∞
  lim
k →∞
  lim
k →∞

If         an =           cn = L   then           bn = L  lim
k →∞


Divergence test: 	If a series converges, then the        = 0  lim
k →∞

If         ≠ 0, then the series diverges
Harmonic series: 	1 + 1/2 + 1/3 + 1/4 + 1/5 + …
	Does it converge?
Divergence test
Cannot be used to prove convergenceΣ  ak
  ∞
k=1

Form of series: 
  lim
k →∞

Condition for divergence:          (ak)  ≠  0 
Integral test: Suppose f is a continuous, positive, decreasing function for  x ≥ 1 and let 
ak =  ƒ(k) for k = 1, 2, 3, … then Σ  ark 
  ∞
k=1


                     and       
either both converge or both diverge
In the case of convergence, the value of the integral is not, in general, equal to 
the value of the series.    
The p-series: the Integral test is used to analyze the convergence of an entire family of   ∞
k=1
Σ  
1
pk  

infinite series known as the p-series:

Ratio test: If in a positive series the ratio of any general term to the preceding term 
approaches a limit L as n →∞ then the series is convergent if L < 1 and 
divergent if L> 1 or if the ratio →∞ as n →∞
If L = 1, the test fails  ∞
k=1
Σ  
1
kp  

Root Test: 
Let                   be an infinite series with nonnegative terms   lim
k →∞


and let p =         ak1/k
1. If  0≤p<1 the series converges
2.  If p>1, (including p = ∞), the series diverges
[image: Diagram, text

Description automatically generated]3.  If p = 1, the test is inconclusive
Comparison Tests
	Used when all else fails



Special Series and Convergence Tests

	Series or Test
	Form of Series
	Cond for Conv
	Cond for Div
	Comments

	Geometric series
	Σ  ark
  ∞
k=1

	|r|<1
	|r|≥1
	If |r|<1 then
sum = a/(1-r)

	Divergence test
	Σ  ak
  ∞
k=1

	Does not apply
	     ak ≠ 0  lim
k →∞

	Cannot be used to prove conv

	Integral test
	Σ  ak
  ∞
k=1


Where ak=ƒ(k) and ƒ is cont, pos and decr
	 
	 does not exist
	The value of the integral is not the value of the series

	p-series
	  ∞
k=1
Σ  
1
pk  

	p>1
	p≤1
	Useful for comparison tests

	Ratio test
	Σ  ak
  ∞
k=1


where ak>0
	  lim
k →∞
<1
ak+1
  ak

	  lim
k →∞
>1
ak+1
  ak

	Inconclusive if
  lim
k →∞
=1
ak+1
  ak



	Root test
	Σ  ak
  ∞
k=1


where ak≥0
	       < 1  lim
k →∞

	         > 1  lim
k →∞

	Inconclusive if 
  lim
k →∞

         = 1


	Comparison test
	Σ  ak
  ∞
k=1

Σ bk
  ∞
k=1

where ak>0
	0<ak≤bk and

        converges
	0<bk≤ak and
Σ bk
  ∞
k=1

        diverges
	          Σ  ak
  ∞
k=1

           is given; 
you supply Σ bk
  ∞
k=1


	Limit comparison test
	          where Σ  ak
  ∞
k=1

ak>0, bk>0
	0≤        <∞Σ bk
  ∞
k=1
  lim
k →∞


    and
converges
	       > 0  lim
k →∞
Σ bk
  ∞
k=1


    and
diverges
	          Σ  ak
  ∞
k=1

           is given; 
you supplyΣ bk
  ∞
k=1


	Alternating series test
	            Σ  (–1)kak
  ∞
k=1

where 
ak>0, 0<ak+1≤ak
	        ak = 0  lim
k →∞

	        ak ≠ 0  lim
k →∞

	Remainder Rn satisfies 
Rn < an+1
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