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Unit 2 Part 3 Readings: Hyperbolic Functions

Hyperbolic Functions
Hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using \	the hyperbola rather than the circle
Just as the points (cos(t), sin(t)) form a circle with a unit radius, the points (cosh(t), sinh(t)) 
form the right half of the unit hyperbola
Just as the slopes of sin(t) and cos(t) are cos(t) and -sin(t), the slopes of sinh(t) and cosh(t) are 
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The hyperbolics can be defined in different ways:
in terms of exponentials:		sinh(x) = (ex – e-x)/2
cosh(x) = (ex + e-x)/2
tanh(x) = (ex - e-x)/(ex + e-x)
in terms of complex trig functions:	sinh(x) = - i sin(i x)
cosh(x) = cos(ix)
tanh(x) = -i (tan(i x)
If hyperbolics are being defined as exponentials, their inverses will be logarithms:
sinh-1(x) = ln(x+)
cosh-1(x) = ln(x+)
tanh-1(x) = ½ln
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Integrals Involving the Inverse Hyperbolic Functions
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